Thomas Pedot

dimanche 19 octobre 2025

Analyze Large Python Codebases (10,000+ Files)

Analyze Large Python Codebases (10,000+ Files): Performance Guide

The Challenge: Enterprise-Scale Analysis

Fortune 500 companies have Python codebases with 10,000+ files. Traditional static analysis tools choke:

Default analysis: Hours for complete scan ⏱️

Memory bloat: 32GB+ RAM consumed 💥

No incremental updates: Every change requires full re-scan 🔄

Code Explorer solves this with intelligent parallelization and incremental analysis.

Performance Benchmarks

Test environment

Files: 10,000 Python files (~2M lines of code)

Hardware: 4-core CPU, 8GB RAM

SetupTimeMemoryStatus
Default (1 worker)45 min8GB✓ Works but slow
4 workers12 min6GBRecommended
8 workers + chunking6 min4GBOptimal
16 workers + streaming3 min2GBFor servers

Quick Start: Analyze 10,000+ Files

Option 1: Automatic optimization (easiest)

Option 2: Manual tuning

Option 3: Incremental mode (for continuous monitoring)

Understanding the Parameters

Workers (parallelization)

Why not max workers? One core stays free for I/O operations.

Chunk size (memory efficiency)

Batch size (database writes)

Real Case Study: Django Codebase (8,000 files)

Incremental Analysis: Game Changer

Result: 45-minute job becomes 30-second job. Perfect for: Daily monitoring

CI/CD pipelines

Local development

Memory Optimization Strategies

Strategy 1: Streaming mode

Strategy 2: Partition by module

Strategy 3: Exclude unnecessary paths

Distributed Analysis (Enterprise)

For really massive codebases (50,000+ files):

Monitoring & Profiling

Check analysis progress

Profile a specific module

Identify slowest files

CI/CD Pipeline Integration

Troubleshooting

Out of memory errors

Analysis times out

Database corrupts after crash

Quick Reference

ScenarioCommand
First run, 4-core machinecode-explorer analyze ./src --auto-scale
Fast local dev updatescode-explorer analyze ./src --incremental
Enterprise (16+ cores)code-explorer analyze ./src --workers 16 --chunk-size 200
Memory-constrainedcode-explorer analyze ./src --streaming --workers 2
CI/CD (strict limits)code-explorer analyze ./src --workers 4 --memory-limit 2GB

Next Steps

  1. Benchmark your codebase: code-explorer analyze ./src --benchmark
  2. Automate in CI/CD with incremental analysis
  3. Set up monitoring for continuous tracking
  4. Scale to distributed analysis for codebases >50,000 files

Pro Tip: Always run with --benchmark on first analysis. This shows which files are slow and where to optimize.